Solving Historical Dictionary Codes with a Neural Language Model

10/09/2020
by   Christopher Chu, et al.
0

We solve difficult word-based substitution codes by constructing a decoding lattice and searching that lattice with a neural language model. We apply our method to a set of enciphered letters exchanged between US Army General James Wilkinson and agents of the Spanish Crown in the late 1700s and early 1800s, obtained from the US Library of Congress. We are able to decipher 75.1 cipher-word tokens correctly.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset