Solving Multi-Coloring Combinatorial Optimization Problems Using Hybrid Quantum Algorithms

11/01/2019
by   Young-Hyun Oh, et al.
0

The design of a good algorithm to solve NP-hard combinatorial approximation problems requires specific domain knowledge about the problems and often needs a trial-and-error problem solving approach. Graph coloring is one of the essential fields to provide an efficient solution for combinatorial applications such as flight scheduling, frequency allocation in networking, and register allocation. In particular, some optimization algorithms have been proposed to solve the multi-coloring graph problems but most of the cases a simple searching method would be the best approach to find an optimal solution for graph coloring problems. However, this naive approach can increase the computation cost exponentially as the graph size and the number of colors increase. To mitigate such intolerable overhead, we investigate the methods to take the advantages of quantum computing properties to find a solution for multi-coloring graph problems in polynomial time. We utilize the variational quantum eigensolver (VQE) technique and quantum approximate optimization algorithm (QAOA) to find solutions for three combinatorial applications by both transferring each problem model to the corresponding Ising model and by using the calculated Hamiltonian matrices. Our results demonstrate that VQE and QAOA algorithms can find one of the best solutions for each application. Therefore, our modeling approach with hybrid quantum algorithms can be applicable for combinatorial problems in various fields to find an optimal solution in polynomial time.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset