Sparse Distributed Memory is a Continual Learner

03/20/2023
by   Trenton Bricken, et al.
0

Continual learning is a problem for artificial neural networks that their biological counterparts are adept at solving. Building on work using Sparse Distributed Memory (SDM) to connect a core neural circuit with the powerful Transformer model, we create a modified Multi-Layered Perceptron (MLP) that is a strong continual learner. We find that every component of our MLP variant translated from biology is necessary for continual learning. Our solution is also free from any memory replay or task information, and introduces novel methods to train sparse networks that may be broadly applicable.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset