Sparse Dynamic Factor Models with Loading Selection by Variational Inference

07/11/2022
by   Erik Spånberg, et al.
0

In this paper we develop a novel approach for estimating large and sparse dynamic factor models using variational inference, also allowing for missing data. Inspired by Bayesian variable selection, we apply slab-and-spike priors onto the factor loadings to deal with sparsity. An algorithm is developed to find locally optimal mean field approximations of posterior distributions, which can be obtained computationally fast, making it suitable for nowcasting and frequently updated analyses in practice. We evaluate the method in two simulation experiments, which show well identified sparsity patterns and precise loading and factor estimation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro