Sparse Joint Transmission for Cell-Free Massive MIMO: A Sparse PCA Approach

12/11/2019
by   Deokhwan Han, et al.
0

Cell-free massive multiple-input multiple-output (MIMO) is a promising cellular network. In this network, a large number of distributed and multi-antenna access points (APs) jointly serve many single antenna users using the same time-frequency resource. Consequently, it possibly provides a uniform service experience to users regardless of the users' locations by eliminating interference at cell boundaries via user-centric joint transmission. This joint transmission, however, requires extremely high signaling overheads for data sharing via backhaul links and causes a high network-wide power consumption. To resolve these problems, in this paper, we present a novel joint transmission method, which is referred to as sparse joint transmission (sparse-JT), for cell-free massive MIMO networks with finite backhaul capacity constraints. Sparse-JT jointly identifies the user-centric cooperative APs sets, precoding vectors for beamforming and compression, and power allocation that maximizes a lower bound of the sum-spectral efficiency under the constraint that a total number of active APs per the joint transmission is sparse. The proposed algorithm guarantees to identify a local-optimal solution for a relaxed sum-spectral maximization problem. By simulations, we show that sparse-JT achieves higher ergodic spectral efficiencies than those attained by multi-cell zero-forcing precoding with the user-centric AP clustering algorithm in all system configurations.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro