Sparse Large-Scale Fading Decoding in Cell-Free Massive MIMO Systems

05/05/2022
by   Shuaifei Chen, et al.
0

Cell-free massive multiple-input multiple-output (CF mMIMO) systems are characterized by having many more access points (APs) than user equipments (UEs). A key challenge is to determine which APs should serve which UEs. Previous work has tackled this combinatorial problem heuristically. This paper proposes a sparse large-scale fading decoding (LSFD) design for CF mMIMO to jointly optimize the association and LSFD. We formulate a group sparsity problem and then solve it using a proximal algorithm with block-coordinate descent. Numerical results show that sparse LSFD achieves almost the same spectral efficiency as optimal LSFD, thus achieving a higher energy efficiency since the processing and signaling are reduced.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro