Sparse Matrix Factorization
We investigate the problem of factorizing a matrix into several sparse matrices and propose an algorithm for this under randomness and sparsity assumptions. This problem can be viewed as a simplification of the deep learning problem where finding a factorization corresponds to finding edges in different layers and values of hidden units. We prove that under certain assumptions for a sparse linear deep network with n nodes in each layer, our algorithm is able to recover the structure of the network and values of top layer hidden units for depths up to Õ(n^1/6). We further discuss the relation among sparse matrix factorization, deep learning, sparse recovery and dictionary learning.
READ FULL TEXT