Spatio-temporal Video Parsing for Abnormality Detection

02/22/2015
by   Borislav Antić, et al.
0

Abnormality detection in video poses particular challenges due to the infinite size of the class of all irregular objects and behaviors. Thus no (or by far not enough) abnormal training samples are available and we need to find abnormalities in test data without actually knowing what they are. Nevertheless, the prevailing concept of the field is to directly search for individual abnormal local patches or image regions independent of another. To address this problem, we propose a method for joint detection of abnormalities in videos by spatio-temporal video parsing. The goal of video parsing is to find a set of indispensable normal spatio-temporal object hypotheses that jointly explain all the foreground of a video, while, at the same time, being supported by normal training samples. Consequently, we avoid a direct detection of abnormalities and discover them indirectly as those hypotheses which are needed for covering the foreground without finding an explanation for themselves by normal samples. Abnormalities are localized by MAP inference in a graphical model and we solve it efficiently by formulating it as a convex optimization problem. We experimentally evaluate our approach on several challenging benchmark sets, improving over the state-of-the-art on all standard benchmarks both in terms of abnormality classification and localization.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset