Specification mining and automated task planning for autonomous robots based on a graph-based spatial temporal logic

07/16/2020
by   Zhiyu Liu, et al.
0

We aim to enable an autonomous robot to learn new skills from demo videos and use these newly learned skills to accomplish non-trivial high-level tasks. The goal of developing such autonomous robot involves knowledge representation, specification mining, and automated task planning. For knowledge representation, we use a graph-based spatial temporal logic (GSTL) to capture spatial and temporal information of related skills demonstrated by demo videos. We design a specification mining algorithm to generate a set of parametric GSTL formulas from demo videos by inductively constructing spatial terms and temporal formulas. The resulting parametric GSTL formulas from specification mining serve as a domain theory, which is used in automated task planning for autonomous robots. We propose an automatic task planning based on GSTL where a proposer is used to generate ordered actions, and a verifier is used to generate executable task plans. A table setting example is used throughout the paper to illustrate the main ideas.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro