SPIKE: Secure and Private Investigation of the Kidney Exchange problem

04/21/2022
by   Timm Birka, et al.
0

Background: The kidney exchange problem (KEP) addresses the matching of patients in need for a replacement organ with compatible living donors. Ideally many medical institutions should participate in a matching program to increase the chance for successful matches. However, to fulfill legal requirements current systems use complicated policy-based data protection mechanisms that effectively exclude smaller medical facilities to participate. Employing secure multi-party computation (MPC) techniques provides a technical way to satisfy data protection requirements for highly sensitive personal health information while simultaneously reducing the regulatory burdens. Results: We have designed, implemented, and benchmarked SPIKE, a secure MPC-based privacy-preserving KEP which computes a solution by finding matching donor-recipient pairs in a graph structure. SPIKE matches 40 pairs in cycles of length 2 in less than 4 minutes and outperforms the previous state-of-the-art protocol by a factor of 400x in runtime while providing medically more robust solutions. Conclusions: We show how to solve the KEP in a robust and privacy-preserving manner achieving practical performance. The usage of MPC techniques fulfills many data protection requirements on a technical level, allowing smaller health care providers to directly participate in a kidney exchange with reduced legal processes.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro