Stability issues of entropy-stable and/or split-form high-order schemes

07/17/2020
by   Gregor J. Gassner, et al.
0

The focus of the present research is on the analysis of local linear stability of high-order (including split-form) summation-by-parts methods, with e.g. two-point entropy-conserving fluxes, approximating non-linear conservation laws. Our main finding is that local linear stability is not guaranteed even when the scheme is non-linearly stable and that this has grave implications for simulation results. We show that entropy-conserving two-point fluxes are inherently locally linearly unstable, as they can be dissipative or anti-dissipative. Unfortunately, these fluxes are at the core of many commonly used high-order entropy-stable extensions, including split-form summation-by-parts discontinuous Galerkin spectral element methods (or spectral collocation methods). For the non-linear Burgers equation, we demonstrate numerically that such schemes cause exponential growth of errors. Furthermore, we demonstrate a similar abnormal behaviour for the compressible Euler equations. Finally, we demonstrate numerically that other commonly used split-forms, such as the Kennedy and Gruber splitting, are also locally linearly unstable.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro