State Space representation of non-stationary Gaussian Processes

01/07/2016
by   Alessio Benavoli, et al.
0

The state space (SS) representation of Gaussian processes (GP) has recently gained a lot of interest. The main reason is that it allows to compute GPs based inferences in O(n), where n is the number of observations. This implementation makes GPs suitable for Big Data. For this reason, it is important to provide a SS representation of the most important kernels used in machine learning. The aim of this paper is to show how to exploit the transient behaviour of SS models to map non-stationary kernels to SS models.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro