Statistical Model Criticism of Variational Auto-Encoders

04/06/2022
by   Claartje Barkhof, et al.
0

We propose a framework for the statistical evaluation of variational auto-encoders (VAEs) and test two instances of this framework in the context of modelling images of handwritten digits and a corpus of English text. Our take on evaluation is based on the idea of statistical model criticism, popular in Bayesian data analysis, whereby a statistical model is evaluated in terms of its ability to reproduce statistics of an unknown data generating process from which we can obtain samples. A VAE learns not one, but two joint distributions over a shared sample space, each exploiting a choice of factorisation that makes sampling tractable in one of two directions (latent-to-data, data-to-latent). We evaluate samples from these distributions, assessing their (marginal) fit to the observed data and our choice of prior, and we also evaluate samples through a pipeline that connects the two distributions starting from a data sample, assessing whether together they exploit and reveal latent factors of variation that are useful to a practitioner. We show that this methodology offers possibilities for model selection qualitatively beyond intrinsic evaluation metrics and at a finer granularity than commonly used statistics can offer.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro