Status Updates with Priorities: Lexicographic Optimality

02/05/2020
by   Ali Maatouk, et al.
0

In this paper, we consider a transmission scheduling problem, in which several streams of status update packets with diverse priority levels are sent through a shared channel to their destinations. We introduce a notion of Lexicographic age optimality, or simply lex-age-optimality, to evaluate the performance of multi-class status update policies. In particular, a lex-age-optimal scheduling policy first minimizes the Age of Information (AoI) metrics for high-priority streams, and then, within the set of optimal policies for high-priority streams, achieves the minimum AoI metrics for low-priority streams. We propose a new scheduling policy named Preemptive Priority, Maximum Age First, Last-Generated, First-Served (PP-MAF-LGFS), and prove that the PP-MAF-LGFS scheduling policy is lex-age-optimal. This result holds (i) for minimizing any time-dependent, symmetric, and non-decreasing age penalty function; (ii) for minimizing any non-decreasing functional of the stochastic process formed by the age penalty function; and (iii) for the cases where different priority classes have distinct arrival traffic patterns, age penalty functions, and age penalty functionals. For example, the PP-MAF-LGFS scheduling policy is lex-age-optimal for minimizing the mean peak age of a high-priority stream and the time-average age of a low-priority stream. Numerical results are provided to illustrate our theoretical findings.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro