Stress Testing Network Reconstruction via Graphical Causal Model
An optimal evaluation of the resilience in financial portfolios implies having initial hypotheses about the causal influence between the macroeconomic variables and the risk parameters. In this paper, we propose a graphical model for to infer the causal structure that links the multiple macroeconomic variables and the assessed risk parameters, Stress Testing Network, in which the relationships between the macroeconomic variables and the risk parameter define a "relational graph" among their time-series, where related time-series are connected by an edge. Our proposal is based on the temporal causal models, but unlike, we incorporate specific conditions in the structure which correspond to intrinsic characteristics to this type of networks. Following the proposed model and given the high-dimensional nature of the problem, we used regularization methods to efficiently detect causality in the time-series and reconstruct the underlying causal structure. In addition, we illustrate the use of model in credit risk data of a portfolio.
READ FULL TEXT