Structured Sparse Principal Component Analysis

09/08/2009
by   Rodolphe Jenatton, et al.
0

We present an extension of sparse PCA, or sparse dictionary learning, where the sparsity patterns of all dictionary elements are structured and constrained to belong to a prespecified set of shapes. This structured sparse PCA is based on a structured regularization recently introduced by [1]. While classical sparse priors only deal with cardinality, the regularization we use encodes higher-order information about the data. We propose an efficient and simple optimization procedure to solve this problem. Experiments with two practical tasks, face recognition and the study of the dynamics of a protein complex, demonstrate the benefits of the proposed structured approach over unstructured approaches.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset