Stubborn: A Strong Baseline for Indoor Object Navigation

03/14/2022
by   Haokuan Luo, et al.
0

We present a strong baseline that surpasses the performance of previously published methods on the Habitat Challenge task of navigating to a target object in indoor environments. Our method is motivated from primary failure modes of prior state-of-the-art: poor exploration, inaccurate object identification, and agent getting trapped due to imprecise map construction. We make three contributions to mitigate these issues: (i) First, we show that existing map-based methods fail to effectively use semantic clues for exploration. We present a semantic-agnostic exploration strategy (called Stubborn) without any learning that surprisingly outperforms prior work. (ii) We propose a strategy for integrating temporal information to improve object identification. (iii) Lastly, due to inaccurate depth observation the agent often gets trapped in small regions. We develop a multi-scale collision map for obstacle identification that mitigates this issue.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro