Subspace Learning for Personalized Federated Optimization
As data is generated and stored almost everywhere, learning a model from a data-decentralized setting is a task of interest for many AI-driven service providers. Although federated learning is settled down as the main solution in such situations, there still exists room for improvement in terms of personalization. Training federated learning systems usually focuses on optimizing a global model that is identically deployed to all client devices. However, a single global model is not sufficient for each client to be personalized on their performance as local data assumes to be not identically distributed across clients. We propose a method to address this situation through the lens of ensemble learning based on the construction of a low-loss subspace continuum that generates a high-accuracy ensemble of two endpoints (i.e. global model and local model). We demonstrate that our method achieves consistent gains both in personalized and unseen client evaluation settings through extensive experiments on several standard benchmark datasets.
READ FULL TEXT