Supervised functional classification: A theoretical remark and some comparisons

06/17/2008
by   Amparo Baillo, et al.
0

The problem of supervised classification (or discrimination) with functional data is considered, with a special interest on the popular k-nearest neighbors (k-NN) classifier. First, relying on a recent result by Cerou and Guyader (2006), we prove the consistency of the k-NN classifier for functional data whose distribution belongs to a broad family of Gaussian processes with triangular covariance functions. Second, on a more practical side, we check the behavior of the k-NN method when compared with a few other functional classifiers. This is carried out through a small simulation study and the analysis of several real functional data sets. While no global "uniform" winner emerges from such comparisons, the overall performance of the k-NN method, together with its sound intuitive motivation and relative simplicity, suggests that it could represent a reasonable benchmark for the classification problem with functional data.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro