Survey on Sociodemographic Bias in Natural Language Processing
Deep neural networks often learn unintended biases during training, which might have harmful effects when deployed in real-world settings. This paper surveys 209 papers on bias in NLP models, most of which address sociodemographic bias. To better understand the distinction between bias and real-world harm, we turn to ideas from psychology and behavioral economics to propose a definition for sociodemographic bias. We identify three main categories of NLP bias research: types of bias, quantifying bias, and debiasing. We conclude that current approaches on quantifying bias face reliability issues, that many of the bias metrics do not relate to real-world biases, and that current debiasing techniques are superficial and hide bias rather than removing it. Finally, we provide recommendations for future work.
READ FULL TEXT