Synthesizing Deep Neural Network Architectures using Biological Synaptic Strength Distributions

07/01/2017
by   A. H. Karimi, et al.
0

In this work, we perform an exploratory study on synthesizing deep neural networks using biological synaptic strength distributions, and the potential influence of different distributions on modelling performance particularly for the scenario associated with small data sets. Surprisingly, a CNN with convolutional layer synaptic strengths drawn from biologically-inspired distributions such as log-normal or correlated center-surround distributions performed relatively well suggesting a possibility for designing deep neural network architectures that do not require many data samples to learn, and can sidestep current training procedures while maintaining or boosting modelling performance.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro