TacticZero: Learning to Prove Theorems from Scratch with Deep Reinforcement Learning
We propose a novel approach to interactive theorem-proving (ITP) using deep reinforcement learning. Unlike previous work, our framework is able to prove theorems both end-to-end and from scratch (i.e., without relying on example proofs from human experts). We formulate the process of ITP as a Markov decision process (MDP) in which each state represents a set of potential derivation paths. The agent learns to select promising derivations as well as appropriate tactics within each derivation using deep policy gradients. This structure allows us to introduce a novel backtracking mechanism which enables the agent to efficiently discard (predicted) dead-end derivations and restart the derivation from promising alternatives. Experimental results show that the framework provides comparable performance to that of the approaches that use human experts, and that it is also capable of proving theorems that it has never seen during training. We further elaborate the role of each component of the framework using ablation studies.
READ FULL TEXT