Target Driven Visual Navigation with Hybrid Asynchronous Universal Successor Representations

11/27/2018
by   Shamane Siriwardhana, et al.
0

Being able to navigate to a target with minimal supervision and prior knowledge is critical to creating human-like assistive agents. Prior work on map-based and map-less approaches have limited generalizability. In this paper, we present a novel approach, Hybrid Asynchronous Universal Successor Representations (HAUSR), which overcomes the problem of generalizability to new goals by adapting recent work on Universal Successor Representations with Asynchronous Actor-Critic Agents. We show that the agent was able to successfully reach novel goals and we were able to quickly fine-tune the network for adapting to new scenes. This opens up novel application scenarios where intelligent agents could learn from and adapt to a wide range of environments with minimal human input.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro