Targeted Adversarial Examples for Black Box Audio Systems

05/20/2018
by   Rohan Taori, et al.
0

The application of deep recurrent networks to audio transcription has led to impressive gains in automatic speech recognition (ASR) systems. Many have demonstrated that small adversarial perturbations can fool deep neural networks into incorrectly predicting a specified target with high confidence. Current work on fooling ASR systems have focused on white-box attacks, in which the model architecture and parameters are known. In this paper, we adopt a black-box approach to adversarial generation, combining the approaches of both genetic algorithms and gradient estimation to solve the task. We achieve a 89.25 94.6

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset