TaskWeb: Selecting Better Source Tasks for Multi-task NLP

05/22/2023
by   Joongwon Kim, et al.
0

Recent work in NLP has shown promising results in training models on large amounts of tasks to achieve better generalization. However, it is not well-understood how tasks are related, and how helpful training tasks can be chosen for a new task. In this work, we investigate whether knowing task relationships via pairwise task transfer improves choosing one or more source tasks that help to learn a new target task. We provide TaskWeb, a large-scale benchmark of pairwise task transfers for 22 NLP tasks using three different model types, sizes, and adaptation methods, spanning about 25,000 experiments. Then, we design a new method TaskShop based on our analysis of TaskWeb. TaskShop uses TaskWeb to estimate the benefit of using a source task for learning a new target, and to choose a subset of helpful training tasks for multi-task learning. Our method improves overall rankings and top-k precision of source tasks by 12 smaller multi-task training sets that improve zero-shot performances across 11 different target tasks by at least 4.3

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro