Template-Based Question Generation from Retrieved Sentences for Improved Unsupervised Question Answering
Question Answering (QA) is in increasing demand as the amount of information available online and the desire for quick access to this content grows. A common approach to QA has been to fine-tune a pretrained language model on a task-specific labeled dataset. This paradigm, however, relies on scarce, and costly to obtain, large-scale human-labeled data. We propose an unsupervised approach to training QA models with generated pseudo-training data. We show that generating questions for QA training by applying a simple template on a related, retrieved sentence rather than the original context sentence improves downstream QA performance by allowing the model to learn more complex context-question relationships. Training a QA model on this data gives a relative improvement over a previous unsupervised model in F1 score on the SQuAD dataset by about 14 achieving state-of-the-art performance on SQuAD for unsupervised QA.
READ FULL TEXT