Temporal patterns in insulin needs for Type 1 diabetes

11/14/2022
by   Isabella Degen, et al.
0

Type 1 Diabetes (T1D) is a chronic condition where the body produces little or no insulin, a hormone required for the cells to use blood glucose (BG) for energy and to regulate BG levels in the body. Finding the right insulin dose and time remains a complex, challenging and as yet unsolved control task. In this study, we use the OpenAPS Data Commons dataset, which is an extensive dataset collected in real-life conditions, to discover temporal patterns in insulin need driven by well-known factors such as carbohydrates as well as potentially novel factors. We utilised various time series techniques to spot such patterns using matrix profile and multi-variate clustering. The better we understand T1D and the factors impacting insulin needs, the more we can contribute to building data-driven technology for T1D treatments.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro