Tensor Completion Algorithms in Big Data Analytics
Tensor completion is a problem of filling the missing or unobserved entries of partially observed tensors. Due to the multidimensional character of tensors in describing complex datasets, tensor completion algorithms and their applications have received wide attention and achievement in data mining, computer vision, signal processing, and neuroscience, etc. In this survey, we provide a modern overview of recent advances in tensor completion algorithms from the perspective of big data analytics characterized by diverse variety, large volume, and high velocity. Towards a better comprehension and comparison of vast existing advances, we summarize and categorize them into four groups including general tensor completion algorithms, tensor completion with auxiliary information (variety), scalable tensor completion algorithms (volume) and dynamic tensor completion algorithms (velocity). Besides, we introduce their applications on real-world data-driven problems and present an open-source package covering several widely used tensor decomposition and completion algorithms. Our goal is to summarize these popular methods and introduce them to researchers for promoting the research process in this field and give an available repository for practitioners. In the end, we also discuss some challenges and promising research directions in this community for future explorations.
READ FULL TEXT