TgDLF2.0: Theory-guided deep-learning for electrical load forecasting via Transformer and transfer learning

10/05/2022
by   Jiaxin Gao, et al.
0

Electrical energy is essential in today's society. Accurate electrical load forecasting is beneficial for better scheduling of electricity generation and saving electrical energy. In this paper, we propose theory-guided deep-learning load forecasting 2.0 (TgDLF2.0) to solve this issue, which is an improved version of the theory-guided deep-learning framework for load forecasting via ensemble long short-term memory (TgDLF). TgDLF2.0 introduces the deep-learning model Transformer and transfer learning on the basis of dividing the electrical load into dimensionless trends and local fluctuations, which realizes the utilization of domain knowledge, captures the long-term dependency of the load series, and is more appropriate for realistic scenarios with scarce samples. Cross-validation experiments on different districts show that TgDLF2.0 is approximately 16 training time. TgDLF2.0 with 50 without noise, which proves its robustness. We also preliminarily mine the interpretability of Transformer in TgDLF2.0, which may provide future potential for better theory guidance. Furthermore, experiments demonstrate that transfer learning can accelerate convergence of the model in half the number of training epochs and achieve better performance.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset