The CLT in high dimensions: quantitative bounds via martingale embedding
We introduce a new method for obtaining quantitative convergence rates for the central limit theorem (CLT) in a high dimensional setting. Using our method, we obtain several new bounds for convergence in transportation distance and entropy, and in particular: (a) We improve the best known bound, obtained by the third named author, for convergence in quadratic Wasserstein transportation distance for bounded random vectors; (b) We derive the first non-asymptotic convergence rate for the entropic CLT in arbitrary dimension, for log-concave random vectors; (c) We give an improved bound for convergence in transportation distance under a log-concavity assumption and improvements for both metrics under the assumption of strong log-concavity. Our method is based on martingale embeddings and specifically on the Skorokhod embedding constructed by the first named author.
READ FULL TEXT