The Connes Embedding Problem: A guided tour

09/26/2021
by   Isaac Goldbring, et al.
0

The Connes Embedding Problem (CEP) is a problem in the theory of tracial von Neumann algebras and asks whether or not every tracial von Neumann algebra embeds into an ultrapower of the hyperfinite II_1 factor. The CEP has had interactions with a wide variety of areas of mathematics, including C*-algebra theory, geometric group theory, free probability, and noncommutative real algebraic geometry (to name a few). After remaining open for over 40 years, a negative solution was recently obtained as a corollary of a landmark result in quantum complexity theory known as MIP^*=RE. In these notes, we introduce all of the background material necessary to understand the proof of the negative solution of the CEP from MIP^*=RE. In fact, we outline two such proofs, one following the "traditional" route that goes via Kirchberg's QWEP problem in C*-algebra theory and Tsirelson's problem in quantum information theory and a second that uses basic ideas from logic.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro