The Deep Learning Galerkin Method for the General Stokes Equations
The finite element method, finite difference method, finite volume method and spectral method have achieved great success in solving partial differential equations. However, the high accuracy of traditional numerical methods is at the cost of high efficiency. Especially in the face of high-dimensional problems, the traditional numerical methods are often not feasible in the subdivision of high-dimensional meshes and the differentiability and integrability of high-order terms. In deep learning, neural network can deal with high-dimensional problems by adding the number of layers or expanding the number of neurons. Compared with traditional numerical methods, it has great advantages. In this article, we consider the Deep Galerkin Method (DGM) for solving the general Stokes equations by using deep neural network without generating mesh grid. The DGM can reduce the computational complexity and achieve the competitive results. Here, depending on the L2 error we construct the objective function to control the performance of the approximation solution. Then, we prove the convergence of the objective function and the convergence of the neural network to the exact solution. Finally, the effectiveness of the proposed framework is demonstrated through some numerical experiments.
READ FULL TEXT