The gradient discretisation method for the chemical reactions of biochemical systems
We consider a biochemical model that consists of a system of partial differential equations based on reaction terms and subject to non–homogeneous Dirichlet boundary conditions. The model is discretised using the gradient discretisation method (GDM) which is a framework covering a large class of conforming and non conforming schemes. Under classical regularity assumptions on the exact solutions, the GDM enables us to establish the existence of the model solutions in a weak sense, and strong convergence for the approximate solution and its approximate gradient. Numerical test employing a finite volume method is presented to demonstrate the behaviour of the solutions to the model.
READ FULL TEXT