The Jacobi Theta Distribution
We form the Jacobi theta distribution through discrete integration of exponential random variables over an infinite inverse square law surface. It is continuous, supported on the positive reals, has a single positive parameter, is unimodal, positively skewed, and leptokurtic. Its cumulative distribution and density functions are expressed in terms of the Jacobi theta function. We describe asymptotic and log-normal approximations, inference, and a few applications of such distributions to modeling.
READ FULL TEXT