The layer complexity of Arthur-Merlin-like communication

11/09/2018
by   D. Gavinsky, et al.
0

In communication complexity the Arthur-Merlin (AM) model is the most natural one that allows both randomness and non-determinism. Presently we do not have any super-logarithmic lower bound for the AM-complexity of an explicit function. Obtaining such a bound is a fundamental challenge to our understanding of communication phenomena. In this work we explore the gap between the known techniques and the complexity class AM. In the first part we define a new natural class Small-advantage Layered Arthur-Merlin (SLAM) that have the following properties: - SLAM is (strictly) included in AM and includes all previously known sub-AM classes with non-trivial lower bounds. - SLAM is qualitatively stronger than the union of those classes. - SLAM is a subject to the discrepancy bound: in particular, the inner product function does not have an efficient SLAM-protocol. Structurally this can be summarised as SBP ∪ UAM ⊂ SLAM ⊆ AM ∩ PP. In the second part we ask why proving a lower bound of ω(√(n)) on the MA-complexity of an explicit function seems to be difficult. Both of these results are related to the notion of layer complexity, which is, informally, the number of "layers of non-determinism" used by a protocol. We believe that further investigation of this concept may lead to better understanding of the communication model AM and to non-trivial lower bounds against it.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro