The Optimal Reward Baseline for Gradient-Based Reinforcement Learning

01/10/2013
by   Lex Weaver, et al.
0

There exist a number of reinforcement learning algorithms which learnby climbing the gradient of expected reward. Their long-runconvergence has been proved, even in partially observableenvironments with non-deterministic actions, and without the need fora system model. However, the variance of the gradient estimator hasbeen found to be a significant practical problem. Recent approacheshave discounted future rewards, introducing a bias-variance trade-offinto the gradient estimate. We incorporate a reward baseline into thelearning system, and show that it affects variance without introducingfurther bias. In particular, as we approach the zero-bias,high-variance parameterization, the optimal (or variance minimizing)constant reward baseline is equal to the long-term average expectedreward. Modified policy-gradient algorithms are presented, and anumber of experiments demonstrate their improvement over previous work.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset