The power of the Binary Value Principle

10/31/2022
by   Yaroslav Alekseev, et al.
0

The (extended) Binary Value Principle (eBVP: ∑_i=1^n x_i2^i-1 = -k for k>0 and x^2_i=x_i) has received a lot of attention recently, several lower bounds have been proved for it (Alekseev et al 2020, Alekseev 2021, Part and Tzameret 2021). Also it has been shown (Alekseev et al 2020) that the probabilistically verifiable Ideal Proof System (IPS) (Grochow and Pitassi 2018) together with eBVP polynomially simulates a similar semialgebraic proof system. In this paper we consider Polynomial Calculus with the algebraic version of Tseitin's extension rule (Ext-PC). Contrary to IPS, this is a Cook–Reckhow proof system. We show that in this context eBVP still allows to simulate similar semialgebraic systems. We also prove that it allows to simulate the Square Root Rule (Grigoriev and Hirsch 2003), which is in sharp contrast with the result of (Alekseev 2021) that shows an exponential lower bound on the size of Ext-PC derivations of the Binary Value Principle from its square. On the other hand, we demonstrate that eBVP probably does not help in proving exponential lower bounds for Boolean formulas: we show that an Ext-PC (even with the Square Root Rule) derivation of any unsatisfiable Boolean formula in CNF from eBVP must be of exponential size.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset