The Representational Capacity of Action-Value Networks for Multi-Agent Reinforcement Learning
Recent years have seen the application of deep reinforcement learning techniques to cooperative multi-agent systems, with great empirical success. However, given the lack of theoretical insight, it remains unclear what the employed neural networks are learning, or how we should enhance their representational power to address the problems on which they fail. In this work, we empirically investigate the representational power of various network architectures on a series of one-shot games. Despite their simplicity, these games capture many of the crucial problems that arise in the multi-agent setting, such as an exponential number of joint actions or the lack of an explicit coordination mechanism. Our results quantify how well various approaches can represent the requisite value functions, and help us identify issues that can impede good performance.
READ FULL TEXT