The Reverse Cuthill-McKee Algorithm in Distributed-Memory
Ordering vertices of a graph is key to minimize fill-in and data structure size in sparse direct solvers, maximize locality in iterative solvers, and improve performance in graph algorithms. Except for naturally parallelizable ordering methods such as nested dissection, many important ordering methods have not been efficiently mapped to distributed-memory architectures. In this paper, we present the first-ever distributed-memory implementation of the reverse Cuthill-McKee (RCM) algorithm for reducing the profile of a sparse matrix. Our parallelization uses a two-dimensional sparse matrix decomposition. We achieve high performance by decomposing the problem into a small number of primitives and utilizing optimized implementations of these primitives. Our implementation shows strong scaling up to 1024 cores for smaller matrices and up to 4096 cores for larger matrices.
READ FULL TEXT