Through the Looking Glass: Neural 3D Reconstruction of Transparent Shapes

04/22/2020
by   Zhengqin Li, et al.
16

Recovering the 3D shape of transparent objects using a small number of unconstrained natural images is an ill-posed problem. Complex light paths induced by refraction and reflection have prevented both traditional and deep multiview stereo from solving this challenge. We propose a physically-based network to recover 3D shape of transparent objects using a few images acquired with a mobile phone camera, under a known but arbitrary environment map. Our novel contributions include a normal representation that enables the network to model complex light transport through local computation, a rendering layer that models refractions and reflections, a cost volume specifically designed for normal refinement of transparent shapes and a feature mapping based on predicted normals for 3D point cloud reconstruction. We render a synthetic dataset to encourage the model to learn refractive light transport across different views. Our experiments show successful recovery of high-quality 3D geometry for complex transparent shapes using as few as 5-12 natural images. Code and data are publicly released.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro