THUIR@COLIEE-2020: Leveraging Semantic Understanding and Exact Matching for Legal Case Retrieval and Entailment
In this paper, we present our methodologies for tackling the challenges of legal case retrieval and entailment in the Competition on Legal Information Extraction / Entailment 2020 (COLIEE-2020). We participated in the two case law tasks, i.e., the legal case retrieval task and the legal case entailment task. Task 1 (the retrieval task) aims to automatically identify supporting cases from the case law corpus given a new case, and Task 2 (the entailment task) to identify specific paragraphs that entail the decision of a new case in a relevant case. In both tasks, we employed the neural models for semantic understanding and the traditional retrieval models for exact matching. As a result, our team (TLIR) ranked 2nd among all of the teams in Task 1 and 3rd among teams in Task 2. Experimental results suggest that combing models of semantic understanding and exact matching benefits the legal case retrieval task while the legal case entailment task relies more on semantic understanding.
READ FULL TEXT