Time Series Graphical Lasso and Sparse VAR Estimation

07/04/2021
by   Aramayis Dallakyan, et al.
0

We improve upon the two-stage sparse vector autoregression (sVAR) method in Davis et al. (2016) by proposing an alternative two-stage modified sVAR method which relies on time series graphical lasso to estimate sparse inverse spectral density in the first stage, and the second stage refines non-zero entries of the AR coefficient matrices using a false discovery rate (FDR) procedure. Our method has the advantage of avoiding the inversion of the spectral density matrix but has to deal with optimization over Hermitian matrices with complex-valued entries. It significantly improves the computational time with a little loss in forecasting performance. We study the properties of our proposed method and compare the performance of the two methods using simulated and a real macro-economic dataset. Our simulation results show that the proposed modification or msVAR is a preferred choice when the goal is to learn the structure of the AR coefficient matrices while sVAR outperforms msVAR when the ultimate task is forecasting.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset