Topic Scaling: A Joint Document Scaling – Topic Model Approach To Learn Time-Specific Topics

by   Sami Diaf, et al.

This paper proposes a new methodology to study sequential corpora by implementing a two-stage algorithm that learns time-based topics with respect to a scale of document positions and introduces the concept of Topic Scaling which ranks learned topics within the same document scale. The first stage ranks documents using Wordfish, a Poisson-based document scaling method, to estimate document positions that serve, in the second stage, as a dependent variable to learn relevant topics via a supervised Latent Dirichlet Allocation. This novelty brings two innovations in text mining as it explains document positions, whose scale is a latent variable, and ranks the inferred topics on the document scale to match their occurrences within the corpus and track their evolution. Tested on the U.S. State Of The Union two-party addresses, this inductive approach reveals that each party dominates one end of the learned scale with interchangeable transitions that follow the parties' term of office. Besides a demonstrated high accuracy in predicting in-sample documents' positions from topic scores, this method reveals further hidden topics that differentiate similar documents by increasing the number of learned topics to unfold potential nested hierarchical topic structures. Compared to other popular topic models, Topic Scaling learns topics with respect to document similarities without specifying a time frequency to learn topic evolution, thus capturing broader topic patterns than dynamic topic models and yielding more interpretable outputs than a plain latent Dirichlet allocation.


page 1

page 2

page 3

page 4


Concentrated Document Topic Model

We propose a Concentrated Document Topic Model(CDTM) for unsupervised te...

CommunityFish: A Poisson-based Document Scaling With Hierarchical Clustering

Document scaling has been a key component in text-as-data applications f...

Scaling Text with the Class Affinity Model

Probabilistic methods for classifying text form a rich tradition in mach...

Look Who's Talking: Bipartite Networks as Representations of a Topic Model of New Zealand Parliamentary Speeches

Quantitative methods to measure the participation to parliamentary debat...

Viewpoint and Topic Modeling of Current Events

There are multiple sides to every story, and while statistical topic mod...

A Nested HDP for Hierarchical Topic Models

We develop a nested hierarchical Dirichlet process (nHDP) for hierarchic...

Is there something I'm missing? Topic Modeling in eDiscovery

In legal eDiscovery, the parties are required to search through their el...

Please sign up or login with your details

Forgot password? Click here to reset