Towards Efficient In-memory Computing Hardware for Quantized Neural Networks: State-of-the-art, Open Challenges and Perspectives

07/08/2023
by   Olga Krestinskaya, et al.
0

The amount of data processed in the cloud, the development of Internet-of-Things (IoT) applications, and growing data privacy concerns force the transition from cloud-based to edge-based processing. Limited energy and computational resources on edge push the transition from traditional von Neumann architectures to In-memory Computing (IMC), especially for machine learning and neural network applications. Network compression techniques are applied to implement a neural network on limited hardware resources. Quantization is one of the most efficient network compression techniques allowing to reduce the memory footprint, latency, and energy consumption. This paper provides a comprehensive review of IMC-based Quantized Neural Networks (QNN) and links software-based quantization approaches to IMC hardware implementation. Moreover, open challenges, QNN design requirements, recommendations, and perspectives along with an IMC-based QNN hardware roadmap are provided.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro