Training Data Set Assessment for Decision-Making in a Multiagent Landmine Detection Platform

04/11/2020
by   Johana Florez-Lozano, et al.
2

Real-world problems such as landmine detection require multiple sources of information to reduce the uncertainty of decision-making. A novel approach to solve these problems includes distributed systems, as presented in this work based on hardware and software multi-agent systems. To achieve a high rate of landmine detection, we evaluate the performance of a trained system over the distribution of samples between training and validation sets. Additionally, a general explanation of the data set is provided, presenting the samples gathered by a cooperative multi-agent system developed for detecting improvised explosive devices. The results show that input samples affect the performance of the output decisions, and a decision-making system can be less sensitive to sensor noise with intelligent systems obtained from a diverse and suitably organised training set.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro