Tram-FL: Routing-based Model Training for Decentralized Federated Learning

08/09/2023
by   Kota Maejima, et al.
0

In decentralized federated learning (DFL), substantial traffic from frequent inter-node communication and non-independent and identically distributed (non-IID) data challenges high-accuracy model acquisition. We propose Tram-FL, a novel DFL method, which progressively refines a global model by transferring it sequentially amongst nodes, rather than by exchanging and aggregating local models. We also introduce a dynamic model routing algorithm for optimal route selection, aimed at enhancing model precision with minimal forwarding. Our experiments using MNIST, CIFAR-10, and IMDb datasets demonstrate that Tram-FL with the proposed routing delivers high model accuracy under non-IID conditions, outperforming baselines while reducing communication costs.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro