Transfer Learning for EEG-Based Brain-Computer Interfaces: A Review of Progresses Since 2016

04/13/2020
by   Dongrui Wu, et al.
0

A brain-computer interface (BCI) enables a user to communicate directly with a computer using the brain signals. Electroencephalogram (EEG) is the most frequently used input signal in BCIs. However, EEG signals are weak, easily contaminated by interferences and noise, non-stationary for the same subject, and varying among different subjects. So, it is difficult to build a generic pattern recognition model in an EEG-based BCI system that is optimal for different subjects, in different sessions, for different devices and tasks. Usually a calibration session is needed to collect some subject-specific data for a new subject, which is time-consuming and user-unfriendly. Transfer learning (TL), which can utilize data or knowledge from similar or relevant subjects/sessions/devices/tasks to facilitate the learning for a new subject/session/device/task, is frequently used to alleviate this calibration requirement. This paper reviews journal publications on TL approaches in EEG-based BCIs in the last few years, i.e., since 2016. Six paradigms and applications – motor imagery (MI), event related potentials (ERP), steady-state visual evoked potentials (SSVEP), affective BCIs (aBCI), regression problems, and adversarial attacks – are considered. For each paradigm/application, we group the TL approaches into cross-subject/session, cross-device, and cross-task settings and review them separately. Observations and conclusions are made at the end of the paper, which may point to future research directions.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset