TransHER: Translating Knowledge Graph Embedding with Hyper-Ellipsoidal Restriction

04/27/2022
by   Yizhi Li, et al.
0

Knowledge graph embedding methods are important for knowledge graph completion (link prediction) due to their robust performance and efficiency on large-magnitude datasets. One state-of-the-art method, PairRE, leverages two separate vectors for relations to model complex relations (i.e., 1-to-N, N-to-1, and N-to-N) in knowledge graphs. However, such a method strictly restricts entities on the hyper-ellipsoid surface and thus limits the optimization of entity distribution, which largely hinders the performance of knowledge graph completion. To address this problem, we propose a novel score function TransHER, which leverages relation-specific translations between head and tail entities restricted on separate hyper-ellipsoids. Specifically, given a triplet, our model first maps entities onto two separate hyper-ellipsoids and then conducts a relation-specific translation on one of them. The relation-specific translation provides TransHER with more direct guidance in optimization and the ability to learn semantic characteristics of entities with complex relations. Experimental results show that TransHER can achieve state-of-the-art performance and generalize to datasets in different domains and scales. All our code will be publicly available.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset