Trees from Functions as Processes
Levy-Longo Trees and Bohm Trees are the best known tree structures on the λ-calculus. We give general conditions under which an encoding of the λ-calculus into the π-calculus is sound and complete with respect to such trees. We apply these conditions to various encodings of the call-by-name λ-calculus, showing how the two kinds of tree can be obtained by varying the behavioural equivalence adopted in the π-calculus and/or the encoding.
READ FULL TEXT