Two harmonic Jacobi–Davidson methods for computing a partial generalized singular value decomposition of a large matrix pair

01/09/2022
by   Jinzhi Huang, et al.
0

Two harmonic extraction based Jacobi–Davidson (JD) type algorithms are proposed to compute a partial generalized singular value decomposition (GSVD) of a large regular matrix pair. They are called cross product-free (CPF) and inverse-free (IF) harmonic JDGSVD algorithms, abbreviated as CPF-HJDGSVD and IF-HJDGSVD, respectively. Compared with the standard extraction based JDGSVD algorithm, the harmonic extraction based algorithms converge more regularly and suit better for computing GSVD components corresponding to interior generalized singular values. Thick-restart CPF-HJDGSVD and IF-HJDGSVD algorithms with some deflation and purgation techniques are developed to compute more than one GSVD components. Numerical experiments confirm the superiority of CPF-HJDGSVD and IF-HJDGSVD to the standard extraction based JDGSVD algorithm.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset